Inductive limits, unique traces and tracial rank zero

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inductive Limits, Unique Traces and Tracial Rank Zero

In the program to classify C-algebras, it is very important to find abstract conditions which are sufficient to imply that a given algebra has tracial rank zero, in the sense of Huaxin Lin. Even in the presence of a unique trace, we show that the union of the known necessary conditions is not enough.

متن کامل

Real structure in unital separable simple C*-algebras with tracial rank zero and with a unique tracial state

Let A be a simple unital C∗-algebra with tracial rank zero and with a unique tracial state and let Φ be an involutory ∗-antiautomorphism of A. It is shown that the associated real algebra AΦ = {a ∈ A : Φ(a) = a∗} also has tracial rank zero. Let A be a unital simple separable C∗-algebra with tracial rank zero and suppose that A has a unique tracial state. If Φ is an involutory ∗-antiautomorphism...

متن کامل

Finite rank vector bundles on inductive limits of grassmannians

If P is the projective ind-space, i.e. P is the inductive limit of linear embeddings of complex projective spaces, the Barth-Van de Ven-Tyurin (BVT) Theorem claims that every finite rank vector bundle on P is isomorphic to a direct sum of line bundles. We extend this theorem to general sequences of morphisms between projective spaces by proving that, if there are infinitely many morphisms of de...

متن کامل

-algebras of Tracial Topological Rank One *

We give a classification theorem for unital separable nuclear simple C∗-algebras with tracial rank no more than one. Let A and B be two unital separable simple nuclear C∗-algebras with TR(A), TR(B) ≤ 1 which satisfy the universal coefficient theorem. We show that A ∼= B if and only if there is an order and unit preserving isomorphism γ = (γ0, γ1, γ2) : (K0(A),K0(A)+, [1A],K1(A), T (A)) ∼= (K0(B...

متن کامل

The Rokhlin property and the tracial topological rank

Let A be a unital separable simple C∗-algebra with TR(A) ≤ 1 and α be an automorphism. We show that if α satisfies the tracially cyclic Rokhlin property then TR(A ⋊α Z) ≤ 1. We also show that whenever A has a unique tracial state and αm is uniformly outer for each m and αr is approximately inner for some r > 0, α satisfies the tracial cyclic Rokhlin property. By applying the classification theo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2007

ISSN: 0024-6093

DOI: 10.1112/blms/bdm007